Nitrogen Management Affects Nitrous Oxide Emissions under Varying Cotton Irrigation Systems in the Desert Southwest, USA

Kevin F. Bronson,* Doug J. Hunsaker, Clinton F. Williams, Kelly R. Thorp, Sharette M. Rockholt, Stephen J. Del Grosso, Rodney T. Venterea, and Edward M. Barnes J. Environ. Qual. 47(1):70–78

Table 3 in this paper contains an error. The fertilizer rate for the zero-N treatment in the second year (2017) should be 0 kg N ha^{-1} , not 172 kg N ha^{-1} . The corrected Table 3 is given below.

Table 3. Nitrous oxide emissions as affected by N management in subsurface drip-irrigated 'DP 1549 B2XF' cotton, Maricopa, AZ, 2016 and 2017.

Nitrogen treatment	Irrigation level		Fertilizer rate		Seasonal N ₂ O flux		N ₂ O emission factor	
	2016	2017	2016	2017	2016	2017	2016	2017
	mm		kg N ha ⁻¹		g N_2 O-N ha $^{-1}$ 117 d $^{-1}$ g N_2 O-N ha $^{-1}$ 113 d $^{-1}$		%	
1. Zero-N	582	608	0	0	170 a†	6 b	_	-
2. Soil test-based N‡	838	851	175	172	290 a	196 a	0	0.08 a
3. Reflectance-based N§	838	851	158	125	173 a	135 a	0	0.006 a
4. Zero-N	838	851	0	0	298 a	59 b	0	-
5. Soil test-based N	582	608	175	172	230 a	218 a	0	0.12 a
SE					68	66	_	0.05

 $[\]dagger$ Means followed by a similar letter are not statistically different at P=0.05.

Copyright © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. 5585 Guilford Rd., Madison, WI 53711 USA. All rights reserved.

 $[\]ddagger$ Based on lint yield goal of 2240 kg ha⁻¹ and a 224 kg N ha⁻¹ N requirement (increased to 252 kg N ha⁻¹ N requirement in 2017) minus 0- to 90-cm soil NO₃-N and estimated irrigation input of 22 kg N ha⁻¹ (estimated 100-cm irrigation of 2 mg L⁻¹ NO₃-N water).

[§] Initial N fertigation rate equals 50% treatment 2; rate was increased when normalized difference vegetation index (NDVI) was significantly less than treatment 2 NDVI.